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First we introduce the notion of parallel normal Jacobi operator for real hypersurfaces in the complex quadric
Qm = SOm+2/SOm SO2. Next we give a complete classification of real hypersurfaces in the complex quadric
Qm = SOm+2/SOm SO2 with parallel normal Jacobi operator.
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1 Introduction

In a class of Hermitian symmetric spaces of rank 2, usually we can give examples of Riemannian symmetric spaces
SUm+2/S(U2Um) and SU2,m/S(U2Um), which are said to be complex two-plane Grassmannians and complex
hyperbolic two-plane Grassmannians respectively (see [12], [13], and [14]). These are viewed as Hermitian
symmetric spaces and quaternionic Kähler symmetric spaces equipped with the Kähler structure J and the
quaternionic Kähler structure J on SU2,m/S(U2Um). The rank of SU2,m/S(U2Um) is 2 and there are exactly
two types of singular tangent vectors X of SU2,m/S(U2Um) which are characterized by the geometric properties
J X ∈ JX and J X ⊥ JX respectively.

As another kind of Hermitian symmetric space with rank 2 of compact type different from the above ones, we
can give the example of complex quadric Qm = SOm+2/SOm SO2, which is a complex hypersurface in complex
projective space CPm+1 (see Suh [15] and [16]). The complex quadric also can be regarded as a kind of real
Grassmann manifolds of compact type with rank 2 (see Kobayashi and Nomizu [4]). Accordingly, the complex
quadric admits both a complex conjugation structure A and a Kähler structure J , which anti-commutes with each
other, that is, AJ = −J A. Then for m≥2 the triple (Qm, J, g) is a Hermitian symmetric space of compact type
with rank 2 and its maximal sectional curvature is equal to 4 (see Klein [3] and Reckziegel [10]).

In the complex projective space CPm , a full classification with isometric Reeb flow was obtained by Okumura
in [5]. He proved that the Reeb flow on a real hypersurface in CPm = SUm+1/S(UmU1) is isometric if and only if
M is an open part of a tube around a totally geodesic CPk ⊂ CPm for some k ∈ {0, . . . , m − 1}. In the complex
2-plane Grassmannian G2

(
C

m+2
) = SUm+2/S(UmU2), Suh [12], [13] has given the classification when the Reeb

flow on a real hypersurface in G2
(
C

m+2
)

is isometric. Moreover, in [14] we have asserted that the Reeb flow on
a real hypersurface in SU2,m/S(U2Um) is isometric if and only if M is an open part of a tube around a totally
geodesic SU2,m−1/S(U2Um−1) ⊂ SU2,m/S(U2Um).

Recently, Suh [12] proved a non-existence property for real hypersurfaces in G2
(
C

m+2
)

with parallel Ricci
tensor, and in [13] gave a characterization by harmonic curvature for a tube over a totally geodesic G2

(
C

m+1
)

in
G2

(
C

m+2
)
. In view of the previous many results a natural expectation might be that the classification involves

at least the totally geodesic Qm−1 ⊂ Qm . But, surprisingly, for real hypersurfaces in Qm the situation is quite
different from the results mentioned above. As an example of such situations, in [15] and [16] we have introduced
the following result:
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Theorem 1 Let M be a real hypersurface of the complex quadric Qm, m ≥ 3. The Reeb flow on M is isometric
if and only if m is even, say m = 2k, and M is an open part of a tube around a totally geodesic CPk ⊂ Q2k .

On the other hand, in [8,9] we have introduced the notion of structure Jacobi operator Rξ , which is a symmetric
operator for real hypersurfaces in the complex projective space CPm , and have used it to study some principal
curvatures for a tube over a totally geodesic submanifold (see Berger [1], Klein [3] and Reckziegel [10]). From
such a view point, recently, Jeong, Kim and Suh [2] have investigated real hypersurfaces M in G2

(
C

m+2
)

with
parallel normal Jacobi operator, that is, ∇X R̄N = 0 for any tangent vector field X on M , and Pérez, Jeong and
Suh [7] generalize this notion to recurrent normal Jacobi operator, that is, (∇X R̄N )Y = β(X)R̄N Y for any vector
fields X, Y on M in G2

(
C

m+2
)
, where β denotes a certain recurrent 1-form defined on M . Moreover, Pak, Suh

and Woo [6] have focused on the study of commuting Jacobi operators, and Pérez and Santos [8], Pérez, Santos
and Suh [9] respectively have investigated recurrent structure Jacobi operator ∇X Rξ = β(X)Rξ or Lie ξ -parallel
structure Jacobi operator in CPm , that is, Lξ Rξ = 0 for any vector field X on a hypersurface M in CPm .

When we consider a hypersurface M in the complex quadric Qm , the unit normal vector field N of M in Qm

can satisfy two conditions: N is A-isotropic or A-principal (see [15, 16] and [17]). In the first case where M has
an A-isotropic unit normal N , we have introduced in [15] and [16] that M is locally congruent to a tube over a
totally geodesic CPk in Q2k . Moreover, this kind of tube is characterized by Suh [15] and [16] in terms of Reeb
parallel or Reeb invariant shape operator of M in Qm respectively. In the second case where N is A-principal we
have proved that M is locally congruent to a tube over a totally geodesic and totally real submanifold Sm in Qm .

In a real hypersurface M in the complex quadric Qm we introduce the notion of parallel normal Jacobi operator
R̄N that is, ∇X R̄N = 0 for any tangent vector field X on M . This has a geometric meaning that the eigenspaces of
the normal Jacobi operator R̄N are parallel, that is, invariant under any parallel displacements along any curves
on M in Qm . Moreover, this meaning gives that if � is an eigenspace of the normal Jacobi operator R̄N , then for
any X ∈ � we have ∇Y X ∈ � along any direction Y on M in Qm .

In this paper, with this kind of geometric notion in the complex quadric Qm , we prove the following

Main Theorem. There do not exist any real hypersurfaces in the complex quadric Qm , m ≥ 3, with parallel
normal Jacobi operator.

2 The complex quadric

For more background to this section we refer to [4], [10], [15], and [17]. The complex quadric Qm is the
complex hypersurface in CPm+1 which is defined by the equation z2

1 + · · · + z2
m+2 = 0, where z1, . . . , zm+2 are

homogeneous coordinates on CPm+1. We equip Qm with the Riemannian metric g which is induced from the
Fubini–Study metric ḡ on CPm+1 with constant holomorphic sectional curvature 4. The Fubini–Study metric ḡ
is defined by ḡ(X, Y ) = �(J X, Y ) for any vector fields X and Y on CPm+1 and a globally closed (1, 1)-form
� given by � = −4i∂∂̄log f j on an open set U j = {[

z0, z1, · · ·, zm+1
] ∈ CPm+1 | z j 	=0

}
, where the function f j

denotes f j = ∑m+1
k=0 t k

j t̄ k
j , and t k

j = zk

z j for j, k = 0, . . ., m + 1. Then naturally the Kähler structure on CPm+1

induces canonically a Kähler structure (J, g) on the complex quadric Qm .
For each z ∈ Qm we identify TzCPm+1 with the orthogonal complement C

m+2 
 Cz of Cz in C
m+2. The

tangent space Tz Qm can then be identified canonically with the orthogonal complement C
m+2 
 (Cz ⊕ Cz̄) of

Cz ⊕ Cz̄ in C
m+2, where z̄ ∈ νz Qm is a normal vector of Qm in CPm+1 at the point z (see Kobayashi and

Nomizu [4]).
The complex projective space CPm+1 is a Hermitian symmetric space of the special unitary group SUm+2,

namely CPm+1 = SUm+2/S(Um+1U1). We denote by o = [0, . . . , 0, 1] ∈ CPm+1 the fixed point of the action of
the stabilizer S(Um+1U1). The special orthogonal group SOm+2 ⊂ SUm+2 acts on CPm+1 with cohomogeneity
one. The orbit containing o is a totally geodesic real projective space RPm+1 ⊂ CPm+1. The second singular
orbit of this action is the complex quadric Qm = SOm+2/SOm SO2. This homogeneous space model leads to the
geometric interpretation of the complex quadric Qm as the Grassmann manifold G+

2

(
R

m+2
)

of oriented 2-planes
in R

m+2. It also gives a model of Qm as a Hermitian symmetric space of rank 2. The complex quadric Q1 is
isometric to a sphere S2 with constant curvature, and Q2 is isometric to S2×S2 the Riemannian product of two
2-spheres with constant curvature. For this reason we will assume m ≥ 3 from now on.
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For a unit normal vector z̄ of Qm at a point z ∈ Qm we denote by A = Az̄ the shape operator of Qm in CPm+1

with respect to z̄. It is defined by

Az̄w = −∇̄w z̄ = −w̄

for any tangent vector field w ∈ Tz Qm , z ∈ Qm . Here the Levi–Civita connection ∇̄ of the complex projective
space CPm+1 is induced from the Euclidean connection ∇̃ of the complex Euclidean space C

m+2. Then the shape
operator becomes an involution on the tangent space Tz Qm , that is, A2

z̄ = I as follows:

A2
z̄w = Az̄ Az̄w = −Az̄w̄ = ∇̄w̄ z̄ = ¯̄w = w

for any tangent vector field w belonging to Tz Qm , z ∈ Qm and the tangent space of Tz Qm is decomposed as

Tz Qm = V (Az̄) ⊕ J V (Az̄),

where V (Az̄) is the +1-eigenspace and J V (Az̄) is the (−1)-eigenspace of Az̄ . Geometrically this means that
the shape operator Az̄ defines a real structure on the complex vector space Tz Qm , or equivalently, is a complex
conjugation on Tz Qm . Since the real codimension of Qm in CPm+1 is 2, this induces an S1-subbundle A of the
endomorphism bundle End(T Qm) consisting of complex conjugations.

There is a geometric interpretation of these conjugations. The complex quadric Qm can be viewed as the
complexification of the m-dimensional sphere Sm . Through each point z ∈ Qm there exists a one-parameter
family of real forms of Qm which are isometric to the sphere Sm . These real forms are congruent to each other
under action of the center SO2 of the isotropy subgroup of SOm+2 at z. The isometric reflection of Qm in such a
real form Sm is an isometry, and the differential at z of such a reflection is a conjugation on Tz Qm . In this way
the family A of conjugations on Tz Qm corresponds to the family of real forms Sm of Qm containing z, and the
subspaces V (A) ⊂ Tz Qm correspond to the tangent spaces Tz Sm of the real forms Sm of Qm .

The Gauss equation for Qm ⊂ CPm+1 implies that the Riemannian curvature tensor R̄ of Qm can be described
in terms of the complex structure J and the complex conjugations A ∈ A:

R̄(X, Y )Z = g(Y, Z)X − g(X, Z)Y + g(JY, Z)J X − g(J X, Z)JY − 2g(J X, Y )J Z

+g(AY, Z)AX − g(AX, Z)AY + g(J AY, Z)J AX − g(J AX, Z)J AY

where X, Y and Z are vector fields belonging to Tz Qm , z∈Qm .
Recall that a nonzero tangent vector W ∈ Tz Qm is called singular if it is tangent to more than one maximal flat

in Qm . There are two types of singular tangent vectors for the complex quadric Qm :

1. If there exists a conjugation A ∈ A such that W ∈ V (A), then W is singular. Such a singular tangent vector
is called A-principal.

2. If there exist a conjugation A ∈ A and orthonormal vectors X, Y ∈ V (A) such that W/||W || = (X +
JY )/

√
2, then W is singular. Such a singular tangent vector is called A-isotropic.

For every unit tangent vector W ∈ Tz Qm there exist a conjugation A ∈ A and orthonormal vectors X, Y ∈ V (A)
such that

W = cos(t)X + sin(t)JY

for some t ∈ [0, π/4]. The singular tangent vectors correspond to the values t = 0 and t = π/4. If 0 < t < π/4
then the unique maximal flat containing W is RX ⊕ RJY .

3 Some general equations

Let M be a real hypersurface in Qm . When we consider a transform J X of the Kaehler structure J on Qm for any
vector field X on M in Qm , we may put

J X = φX + η(X)N
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for a unit normal N to M , where φX denotes a tangential component of J X , ξ = −J N , and η(X) = g(ξ, X).
Then it naturally satisfy the following

φ2 X = −X + η(X)ξ, φξ = 0, and η(ξ) = 1.

In this case we call (φ, ξ, η, g) the induced almost contact metric structure. The tangent bundle T M of M splits
orthogonally into T M = C ⊕ Rξ , where C = ker(η) is the maximal complex subbundle of T M . The structure
tensor field φ restricted to C coincides with the complex structure J restricted to C, and φξ = 0.

At each point z ∈ M we define a maximal A-invariant subspace of Tz M , z∈M as follows:

Qz = {X ∈ Tz M | AX ∈ Tz M for all A ∈ Az}.
Then we want to introduce an important lemma as follows:

Lemma 3.1 (See [15].) For each z ∈ M we have

(i) If Nz is A-principal, then Qz = Cz .
(ii) If Nz is not A-principal, there exist a conjugation A ∈ A and orthonormal vectors X, Y ∈ V (A) such that

Nz = cos(t)X + sin(t)JY for some t ∈ (0, π/4]. Then we have Qz = Cz 
 C(J X + Y ).

We now assume that M is a Hopf hypersurface. Then the shape operator S of M in Qm satisfies

Sξ = αξ

with the smooth function α = g(Sξ, ξ) on M . Then the equation of Codazzi is given as follows:

g((∇X S)Y − (∇Y S)X, Z) = η(X)g(φY, Z) − η(Y )g(φX, Z) − 2η(Z)g(φX, Y )
+g(X, AN)g(AY, Z) − g(Y, AN)g(AX, Z)
+g(X, Aξ)g(J AY, Z) − g(Y, Aξ)g(J AX, Z).

(3.1)

Putting Z = ξ in (3.1), we get

g((∇X S)Y − (∇Y S)X, ξ) = −2g(φX, Y )
+g(X, AN)g(Y, Aξ) − g(Y, AN)g(X, Aξ)
−g(X, Aξ)g(JY, Aξ) + g(Y, Aξ)g(J X, Aξ).

On the other hand, we have

g((∇X S)Y − (∇Y S)X, ξ)

= g((∇X S)ξ, Y ) − g((∇Y S)ξ, X)

= (Xα)η(Y ) − (Yα)η(X) + αg((Sφ + φS)X, Y ) − 2g(SφSX, Y ).

Comparing the previous two equations and putting X = ξ yields

Yα = (ξα)η(Y ) − 2g(ξ, AN)g(Y, Aξ) + 2g(Y, AN)g(ξ, Aξ). (3.2)

At each point z ∈ M we can choose A ∈ Az such that

N = cos(t)Z1 + sin(t)J Z2

for some orthonormal vectors Z1, Z2 ∈ V (A) and 0 ≤ t ≤ π
4 (see [7, Proposition 3]). Since the Reeb vector field

ξ is given by ξ = −J N , we have

N = cos(t)Z1 + sin(t)J Z2,

AN = cos(t)Z1 − sin(t)J Z2,

ξ = sin(t)Z2 − cos(t)J Z1,

Aξ = sin(t)Z2 + cos(t)J Z1.

(3.3)

This implies that g(ξ, AN) = 0.
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4 A key lemma

Let M be a real hypersurface in a complex quadric Qm which is a complex hypersurface in CPm+1, and let N
be a unit normal vector field to M in Qm . From the Riemannian curvature tensor R̄ of the complex quadric Qm

given in Section 2, the normal Jacobi operator R̄N is defined in such a way that

R̄N (X) = R̄(X, N)N

= X + g(J N , N)J X − g(J X, N)J N − 2g(J X, N)J N

+g(AN , N)AX − g(AX, N)AN + g(J AN , N)J AX − g(J AX, N)J AN

for any tangent vector field X in Tz M and the unit normal N of M in Tz Qm , z ∈ Qm . Then the normal Jacobi
operator R̄N becomes a symmetric operator on the tangent space Tz M , z ∈ M , of Qm . From this, by the complex
structure J and the complex conjugations A ∈ A, together with the fact that g(Aξ, N) = 0 and ξ = −J N in
Section 3, the normal Jacobi operator R̄N is given by

R̄N (Y ) = Y + 3η(Y )ξ + g(AN , N)AY

−g(AY, N)AN − g(AY, ξ)Aξ

for any Y∈ Tz M , z∈M . Then the covariant derivative of R̄N is given by

(∇X R̄N )Y = ∇X (R̄N (Y )) − R̄N (∇X Y ). (4.1)

Now let us put Y = ξ in above equation. Then it follows that

R̄N (ξ) = 4ξ + {g(AN , N) − g(Aξ, ξ)}Aξ = 4ξ + 2g(AN , N)Aξ,

where we have used that g(Aξ, ξ) = g(AJ N , J N) = −g(J AN , J N) = −g(AN , N).
Here we use the assumption of parallel normal Jacobi operator. Then (4.1) gives that

0 = (∇X R̄N )ξ
= ∇X (R̄N (ξ)) − R̄N (∇Xξ)
= 4∇Xξ + 2

{
g(∇̄X AN , N) + g(AN , ∇̄X N)

}
Aξ + 2g(AN , N)∇X (Aξ)

−
{
∇Xξ + g(AN , N)A∇Xξ − g(A∇Xξ, N)AN − g(A∇Xξ, ξ)Aξ

}
(4.2)

From this, by taking an inner product with the unit normal N , we have

g(AN , N){q(X)g(J Aξ, N) + g(AφSX, N) + g(SX, ξ)g(AN , N) − g(SX, Aξ)} = 0.

Then by putting X = ξ , we get

g(AN , N){q(ξ)g(Aξ, ξ) − 2αg(Aξ, ξ)} = 0. (4.3)

On the other hand, we know that

∇̄X (AY ) − A∇X Y = (∇̄X A)Y + A∇̄X Y − A∇X Y

= q(X)J AY + Aσ (X, Y )
= q(X)J AY + g(SX, Y )AN ,

where q denotes an 1-form defined on Tz Qm , z∈Qm . So naturally it follows that

(∇X A)ξ = ∇̄X (Aξ) − A∇Xξ

= (∇̄X A)ξ + A∇̄Xξ − A∇Xξ

= q(X)J Aξ + g(SX, ξ)AN .
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From this, together with (4.1), it follows that

0 = (∇X R̄N )Y
= 3g(φSX, Y )ξ + 3η(Y )φSX

+{q(X)g(J AN , N) − g(ASX, N) − g(AN , SX)}AY

+g(AN , N){q(X)J AY + g(SX, Y )AN }
−{q(X)g(J AY, N) + g(SX, Y )g(AN , N)}AN

+g(AY, SX)AN − g(AY, N){(∇̄X A)N + A∇̄X N }
−g((∇̄X A)Y, ξ)Aξ − g(AY, φSX + σ (X, ξ))Aξ

−g(AY, ξ){(∇X A)ξ + A∇Xξ},

(4.4)

where we have used the equation of Gauss ∇̄Xξ = ∇Xξ + σ (X, ξ), σ (X, ξ) denotes the normal bundle T ⊥M
valued second fundament tensor on M in Qm . From this, putting Y = ξ and using (∇̄X A)Y = q(X)J AY , and
∇̄X N = −SX we have

0 = 3φSX

+{q(X)g(J AN , N) − g(ASX, N) − g(AN , SX)}Aξ

+g(AN , N){q(X)J Aξ + g(SX, ξ)AN }
−{q(X)g(J Aξ, N) + g(SX, ξ)g(AN , N)}AN

+g(Aξ, SX)AN − g(q(X)J Aξ, ξ)Aξ

−g(Aξ, φSX + σ (X, ξ))Aξ

−g(Aξ, ξ){q(X)J Aξ + AφSX + g(SX, ξ)AN }.

(4.5)

From this, by taking the inner product with the unit normal N , we have

g(Aξ, SX)g(AN , N) − q(X)g(Aξ, ξ)g(J Aξ, N)
−g(Aξ, ξ)g(AφSX, N) − g(Aξ, ξ)g(SX, ξ)g(AN , N) = 0.

(4.6)

Then by putting X = ξ and using the assumption of Hopf, we have

q(ξ)g(Aξ, ξ)2 = 0. (4.7)

This gives that q(ξ) = 0 or g(Aξ, ξ) = 0. The latter case implies that the unit normal N is A-isotropic. When the
first case q(ξ) = 0 holds, (4.3) implies

αg(Aξ, ξ)g(AN , N) = 0. (4.8)

Then from (4.8) we can assert the following lemma

Lemma 4.1 Let M be a Hopf real hypersurface in complex quadric Qm, m ≥ 3, with parallel normal Jacobi
operator. Then the unit normal vector field N is A-principal or A-isotropic.

P r o o f . When the Reeb function α is non-vanishing, (4.8) gives g(Aξ, ξ) = 0 or g(AN , N) = 0. Then by
(3.3), we know that cos2 t − sin2 t = cos 2t = 0. This gives that t = π

4 . Then by also (3.3), the unit normal N
becomes A-isotropic, that is, N = 1√

2
(Z1 + J Z2) for some Z1, Z2∈V (A).

When the Reeb function α identically vanishes, let us show that N is A-isotropic or A-principal. In order
to do this, from the condition of Hopf, we can differentiate Sξ = αξ and use the equation of Codazzi (3.1) in
Section 3, then we get the formula

Yα = (ξα)η(Y ) − 2g(ξ, AN)g(Y, Aξ) + 2g(Y, AN)g(ξ, Aξ).

From this, if we put α = 0, together with the fact g(ξ, AN) = 0 in Section 3, we know g(Y, AN)g(ξ, Aξ) = 0 for
any Y∈ Tz M , z ∈ M . This gives that the vector AN is normal, that is, AN = g(AN , N)N or g(Aξ, ξ) = 0, which
implies respectively the unit normal N is A-principal or A-isotropic. This completes the proof of our lemma. �

By virtue of this lemma, we distinguish between two classes of real hypersurfaces in complex quadric Qm

with parallel normal Jacobi operator: those that have A-principal unit normal, and those that have A-isotropic unit
normal vector field N . We treat the respective cases in Sections 5 and 6.
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5 Parallel normal Jacobi operator with A-principal normal

In this section let us consider a real hypersurface M in a complex quadric with A-principal unit normal vector
field. Then the unit normal vector field N satisfies AN = N for a complex conjugation A∈A.

Then the normal Jacobi operator R̄N in Section 4 becomes

R̄N (X) = X + 3η(X)ξ + AX − η(X)ξ = X + 2η(X)ξ + AX, (5.1)

where we have used that AN = N and

g(AX, ξ)Aξ = g(AX, J N)AJ N = g(X, AJ N)AJ N

= g(X, J AN)J AN = g(X, J N)J N

= η(X)ξ.

On the other hand, we can put

AY = BY + ρ(Y )N ,

where BY denotes the tangential component of AY and ρ(Y ) = g(AY, N) = g(Y, AN) = g(Y, N) = 0. So it
becomes always AY = BY for any vector field Y on M in Qm . Then by differentiating (5.1) along any direction
X , we have

(∇X R̄N )Y = ∇X (R̄N (Y )) − R̄N (∇X Y )
= 2(∇Xη)(Y ) + 2η(Y )∇Xξ + (∇X B)Y.

(5.2)

Suppose that the normal Jacobi operator R̄N is parallel on M . Then (5.2) becomes

0 = 2g(φSX, Y )ξ + 2η(Y )φSX + (∇X B)Y.

From this, putting Y = ξ , it becomes

2φSX = −(∇X B)ξ = −(∇X A)ξ. (5.3)

On the other hand, differentiating the tangent vector Aξ = Bξ and using the equation of Gauss and Weingarten
formula, we have the following

(∇X A)ξ = ∇X (Aξ) − A∇Xξ

= ∇̄X (Aξ) − σ (X, Aξ) − AφSX

= (∇̄X A)ξ + A∇̄Xξ − σ (X, Aξ) − AφSX

= q(X)J Aξ + AφSX − σ (X, Aξ) − AφSX + η(SX)AN ,

(5.4)

where in the final equality we have used AN = N and ∇̄Xξ = ∇Xξ + g(SX, ξ)N and the Gauss equation
∇̄X (Aξ) = ∇X (Aξ) + σ (X, Aξ). From this, together with (5.3) and AN = N , we have

2φSX = −{−q(X)AN + AφSX − σ (X, Aξ) − AφSX + αη(X)AN }
= {q(X)N + σ (X, Aξ) − αη(X)N } (5.5)

for any tangent vector field X on M in Qm , where we have used J Aξ = −J AJ N = J 2 AN = −AN . By
comparing the normal and tangential part of (5.5) respectively, we have

φSX = 0

for any vector field X on M . This gives SX = η(SX)ξ , that is, M is said to be totally η-umbilical, which implies
SφX = φSX for any vector field X on M in Qm . Then by Theorem 1.1 due to Suh [15] and [16], M is locally
congruent to a tube over a totally geodesic CPk in a complex quadric Q2k . But they are never totally η-umbilical.
So we conclude that there does not exist any real hypersurfaces in complex quadric Qm with parallel normal
Jacobi operator when the unit normal vector field N is A-principal.
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6 Parallel normal Jacobi operator with A-isotropic normal

In this section let us assume that the unit normal vector field N is A-isotropic. Then the normal vector field N can
be put

N = 1√
2
(Z1 + J Z2)

for Z1, Z2∈V (A), where V (A) denotes a (+1)-eigenspace of the complex conjugation A ∈ A. Then it follows
that

AN = 1√
2
(Z1 − J Z2), AJ N = − 1√

2
(J Z1 + Z2), and J N = 1√

2
(J Z1 − Z2).

From this, together with (3.3) and the anti-commuting AJ = −J A, it follows that

g(ξ, Aξ) = g(J N , AJ N) = 0, g(ξ, AN) = 0 and g(AN , N) = 0.

By virtue of these formulas for an A-isotropic unit normal, the normal Jacobi operator R̄N in Section 4 is
given by

R̄N (Y ) = Y + 3η(Y )ξ − g(AY, N)AN − g(AY, ξ)Aξ.

Now let us assume that the normal Jacobi operator R̄N on M is parallel. Then it gives that

0 = (∇X R̄N )Y
= 3(∇Xη)(Y )ξ + 3η(Y )∇Xξ − g(∇X (AN), Y )AN

−g(AN , Y )∇X (AN) − g(Y,∇X (Aξ))Aξ − g(Aξ, Y )∇X (Aξ).
(6.1)

On the other hand, by using the equation of Gauss we know that

∇X (AN) = ∇̄X (AN) − σ (X, AN)
= (∇̄X A)N + A∇̄X N − σ (X, AN)
= q(X)J AN − ASX − σ (X, AN),
= q(X)Aξ − ASX − σ (X, AN),

and

∇X (Aξ) = ∇̄X (Aξ) − σ (X, Aξ)
= (∇̄X A)ξ + A∇̄Xξ − σ (X, Aξ)
= q(X)J Aξ + A{φSX + η(SX)N } − σ (X, Aξ)
= −q(X)AN + AφSX + η(SX)AN − σ (X, Aξ).

Substituting these formulas into (6.1) and putting Y = ξ in the obtained equation, we know

0 = 3(∇Xη)(ξ)ξ + 3∇Xξ − g(∇X (AN), ξ)AN − g(ξ,∇X (Aξ))Aξ

= 3φSX + g(AN , φSX)AN + g(φSX, Aξ)Aξ.
(6.2)

Then by taking the inner product of (6.2) with AN and using g(AN , AN) = 1, and g(AN , Aξ) = 0, we have

g(φSX, AN) = 0.

Also, by applying Aξ to (6.2) and using g(Aξ, Aξ) = 1, and g(AN , Aξ) = 0 , it follows that

g(φSX, Aξ) = 0.

From these, together with (6.2), it follows that φSX = 0. This implies that SX = αη(X)ξ , that is, M is totally
η-umbilical. Then the shape operator S commutes with the structure tensor φ. Then by Theorem 1.1 in Suh [15],
[16], M is locally congruent to a tube over a totally geodesic complex submanifold CPk in Q2k . But this kind of
tube is never totally η-umbilical. Accordingly, we conclude that any real hypersurfaces M in Qm with A-isotropic
do not admit any parallel normal Jacobi operator.
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Remark 6.1 When a real hypersurface M in Q2k is locally congruent to a tube of radius r (0 < r < π
2 ) over

a totally geodesic CPk in Q2k , in Suh [15] and [17], we have introduced that the shape operator S commutes
with the structure tensor φ. Moreover, it is known that the normal vector field N is A-isotropic and Hopf, that
is, Sξ = αξ and the Reeb function α is constant. If we suppose that the normal Jacobi operator is parallel, then
by (5.2) the shape operator becomes SX = αη(X)ξ , which is said to be totally η-umbilical. But, by virtue of the
principal curvature given in [15], [16] the tube mentioned above is not totally η-umbilical. This means that the
tube does not admit parallel normal Jacobi operator.

Remark 6.2 When we consider that M is locally congruent to a tube of radius r , 0 < r < π

2
√

2
, over a totally

geodesic and totally real space form Sm in Qm . Then in Suh [16] and [17] it is known that M has three distinct
constant principal curvatures α = −√

2 cot(
√

2r), λ = 0 and μ = √
2 tan(

√
2r) with multiplicities 1, m − 1 and

m − 1 respectively. This is equivalent to φS + Sφ = kφ, where k is a constant k 	= 0. Moreover, the unit normal
N of M in Qm is A-principal, that is, AN = N , and Aξ = −ξ . If we assume that the normal Jacobi operator on
M is parallel, then by (6.2) we know φSX = 0 for any vector field X on M , which gives that SX = αη(X)ξ .
Then SφX = αη(φX)ξ = 0. From this, together with the above formula φS + Sφ = kφ, it gives kφ = 0, k 	= 0
const, which gives a contradiction. Accordingly, the tube mentioned above also does not admit parallel normal
Jacobi operator.

Remark 6.3 In [17] we have classified real hypersurfacees M in complex quadric Qm with parallel
Ricci tensor, according to the unit normal N is A-principal or A-isotropic normal. When N is A-principal,
we proved a non-existence property for Hopf hypersurfaces in Qm . For a Hopf real hypersurface M in
Qm with A-isotropic we have given a complete classification that M has three distinct constant principal
curvatures.
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